469 – Applicability of an Unmedicated Feeding Program Aimed to Reduce the Use of Antimicrobials in Nursery Piglets – Impact on Performance and Fecal Microbiota (Research paper – López-Colom – 2020)

 

 

469 Research paper – López-Colom – 2020 – Applicability of an Unmedicated Feeding Program Aimed to Reduce the Use of Antimicrobials in Nursery Piglets_ Impact on Performance and Fecal Microb

469 Research paper
Applicability of an Unmedicated Feeding Program Aimed to Reduce the Use of Antimicrobials in Nursery Piglets: Impact on Performance and Fecal Microbiota by López-Colom, P., Estellé, J., Bonet, J., Coma, J., and S.M. Martin-Orue 2020 Animals 2020 Feb: 242
In Significant Impact Groups: Feed / gut health
Species targeted: Pigs;
Age: Young;
Summary:
The need for a reduction in the use of antibiotics in livestock to safeguard their efficacy requires the development of alternatives. In this line, the use of alternative by-products or ingredients, with functional properties brings the opportunity to improve pig health and thus, reduce medicalization. Therefore, in the present study, we aimed to evaluate the impact of an alternative feeding program based on unmedicalized diets formulated with fibrous by-products and functional feed ingredients on performance and fecal microbiota of young pigs compared to a common weaner diet supplemented with antibiotics. The alternative feeding program could anticipate the gut development of young piglets, which at the end of the nursery period presented a fecal microbiota more similar to that found in fattening animals. Moreover, piglets in the unmedicalized diets showed a trend to reduce the course of diarrhea immediately after weaning. The alternative feeding program showed, however, a reduced growth efficiency during the nursery period that needs to be discussed in the frame of the costs-benefits analysis of reducing antibiotics.
469 Research paper – López-Colom – 2020 – Applicability of an Unmedicated Feeding Program Aimed to Reduce the Use of Antimicrobials in Nursery Piglets_ Impact on Performance and Fecal Microbiota
Where to find the original material: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070809/pdf/animals-10-00242.pdf; https://dx.doi.org/10.3390%2Fani10020242
Country: ES

 

444 – Mitigating Antimicrobial Resistance Risks When Using Reclaimed Municipal Wastewater for Agriculture (Research paper – Hong – 2020)

 

 

444 Research paper – Hong – 2020 – Mitigating Antimicrobial Resistance Risks When Using Reclaimed Municipal Wastewater for Agriculture

444 Research paper
Mitigating Antimicrobial Resistance Risks When Using Reclaimed Municipal Wastewater for Agriculture by Hong, P. Y., Wang, C., & Mantilla-Calderon, D. 2020 Handbook of Environmental Chemistry 91: 245-265
In Significant Impact Groups: Water \ Water quality
Species targeted: Other;
Age: Not stated;
Summary:
Treated wastewater can be used as an alternative water supply to mitigate our reliance on nonrenewable waters. However, concerns related to emerging contaminants such as antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) can impede efforts to push for widespread use of treated wastewater in agricultural irrigation. This chapter aims to provide a better understanding of the potential concerns by first using case studies in two countries that have already practiced water reuse. Second, we collate and analyze data that suggests that wastewater treatment plants able to achieve at least 8-log reduction in microbiological contaminants may suffice as appropriate intervention barriers for ARB dissemination to the environment. It would be prudent to adopt the precautionary principle and to implement appropriate intervention strategies and best management practices that minimize the impacts and concerns arising from the reuse of treated wastewater in agriculture.
444 Research paper – Hong – 2020 – Mitigating Antimicrobial Resistance Risks When Using Reclaimed Municipal Wastewater for Agriculture
Where to find the original material: https://link.springer.com/chapter/10.1007/698_2020_473; 10.1007/698_2020_473
Country: Singapore

438 – Detection of antibiotic-resistant bacteria and their resistance genes in wastewater surface water and drinking water biofilms (Research paper – Schwartz – 2003)

 

 

438 Research paper – Schwartz – 2003 – Detection of antibiotic-resistant bacteria and their resistance genes in wastewater surface water and drinking water biofilms

438 Research paper
Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms by Schwartz, T., Kohnen, W., Jansen, B., & Obst, U. 2003 FEMS Microbiology Ecology 43: 325-335
In Significant Impact Groups: Other
Species targeted: Other;
Age: Not stated;
Summary:
In addition to wastewater, biofilms were also investigated in drinking water from river bank filtrate to estimate the occurrence of resistant bacteria and their resistance genes, thus indicating possible transfer from wastewater and surface water to the drinking water distribution network. The vanA gene was found not only in wastewater biofilms but also in drinking water biofilms in the absence of enterococci, indicating possible gene transfer to autochthonous drinking water bacteria.
438 Research paper – Schwartz – 2003 – Detection of antibiotic-resistant bacteria and their resistance genes in wastewater surface water and drinking water biofilms
Where to find the original material: https://www.sciencedirect.com/science/article/abs/pii/S0168649602004440; 10.1016/S0168-6496(02)00444-0
Country: DE

425 – Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants (Research paper – Barancheshme – 2018)

 

 

425 Research paper – Barancheshme – 2018 – Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants

425 Research paper
Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants by Barancheshme, F., & Munir, M. 2018 Frontiers in Microbiology 8: 12-Jan
In Significant Impact Groups: Water
Species targeted: Other;
Age: Not stated;
Summary:
The main goal of this manuscript is to review different treatment strategies and mechanisms for combating the antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in the wastewater environment. The high amount of antibiotics is released into the wastewater that may promote selection of ARB and ARGs which find their way into natural environments. In order to find solutions to control dissemination of antibiotic resistance in the environment, it is important to (1) study innovative strategies in large scale and over a long time to reach an actual evaluation, (2) develop risk assessment studies to precisely understand occurrence and abundance of ARB/ARGs so that their potential risks to human health can be determined, and (3) consider operating and environmental factors that affect the efficiency of each treatment mechanism.
425 Research paper – Barancheshme – 2018 – Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants
Where to find the original material: https://www.frontiersin.org/articles/10.3389/fmicb.2017.02603/full; 10.3389/fmicb.2017.02603

Country: USA

420 – The use of inulin in poultry feeding – A review (Research paper – Bucław – 2016)

 

 

420 Research paper – Bucław – 2016 – The use of inulin in poultry feeding_ a review

420 Research paper
The use of inulin in poultry feeding: a review. by Bucław M. 2016 Animal Physiology and Animal Nutrition 100: 1015-1022
In Significant Impact Groups: Feed / gut health \ Feed additives and supplements
Species targeted: Poultry;
Age: Adult;
Summary:
Since the European Union enforced the ban on antibiotic growth promoters in 2006, the research has been focused on natural feed additives which would have a proven positive impact on both production and animal health. Inulin is both the most commonly used and the most effective probiotic additive. The mechanism of inulin interactions with the avian body is complex, multidirectional and not fully understood. Despite a number of unresolved issues, many authors have demonstrated the positive impact of inulin on the host organism. The reports on inulin effects on the body and performance of poultry are often contradictory, as the effectiveness of this prebiotic is strongly dependent on the type and dose used, and the duration of its administration.
420 Research paper – Bucław – 2016 – The use of inulin in poultry feeding_ a review
Where to find the original material: https://onlinelibrary.wiley.com/doi/full/10.1111/jpn.12484; https://doi.org/10.1111/jpn.12484
Country: PL

419 – Effects of a protected inclusion of organic acids and essential oils as antibiotic growth promoter alternative on growth performance, intestinal morphology and gut microflora in broilers(Research paper – Yanli – 2017)

 

 

419 Research paper – Yanli – 2017 – Effects of a protected inclusion of organic acids and essential oils as antibiotic growth promoter alternative on growth performance in

419 Research paper
Effects of a protected inclusion of organic acids and essential oils as antibiotic growth promoter alternative on growth performance, intestinal morphology and gut microflora in broilers by Yanli Liu, Xin Yang, Hongliang Xin , Si Chen, Chengbo Yang, Yulan Duan, Xiaojun Yang, 2017 Animal Science Journal 88: 1414-1424.
In Significant Impact Groups: Feed / gut health \ Feed additives and supplements
Species targeted: Poultry;
Age: Adult; Young;
Summary:
This experiment was conducted to investigate the effects of protected essential oils and organic acids mixture on poultry feeding. Product supplementation improved spleen index, villus height and crypt depth of the jejunum at 42 days when compared with the control (P < 0.05). In addition, secretory immunoglobulin A level of ileal mucosa and trypsin and chymotrypsin activities of intestinal tract were higher in the P treatment. Bacterial sequence analysis of the intestinal tract revealed that protected essential oils and organic acids mixture supplementation changed gut microflora mainly in Lactobacillus. These data suggested that dietary mixture of organic acids and essential oils addition could be used in the poultry industry as an antibiotic growth promoter alternative.
419 Research paper – Yanli – 2017 – Effects of a protected inclusion of organic acids and essential oils as antibiotic growth promoter alternative on growth performance in
Where to find the original material: https://onlinelibrary.wiley.com/doi/abs/10.1111/asj.12782; https://doi.org/10.1111/asj.12782
Country: CN

418 – Biochemical proximates of pumpkin Cucurbitaeae spp and their beneficial effects on the general well‐being of poultry species (Research paper – Achilonu – 2017)

 

 

418 Research paper – Achilonu – 2017 – Biochemical proximates of pumpkin Cucurbitaeae spp and their beneficial effects on the general well‐being of poultry species

418 Research paper
Biochemical proximates of pumpkin (Cucurbitaeae spp.) and their beneficial effects on the general well‐being of poultry species by M. C. Achilonu I. C. Nwafor D. O. Umesiobi M. M. Sedibe. 2017 Animal Physiology and Animal Nutrition 102: 16-May
In Significant Impact Groups: Feed / gut health \ Feed additives and supplements
Species targeted: Poultry;
Age: Adult;
Summary:
There is a growing need to increase productivity in poultry. The growth‐promoting antibiotics are administered to poultry to improve the general performance of the chicken. However, the use of the xenobiotic drugs in food‐producing animals has been a concern and a sensitive issue of debate for several decades in the EU and many other regional blocks of the world. Pumpkin seed extract is reported to be useful for immunomodulation, reproductive health, therapeutics over a wide range of disease conditions and stimulates metabolism of accumulated fats. Studies have also shown that pumpkin seeds are a valuable source of protein and fat. Their complexity and extent of bioactivity offers sustainable prospects for natural control of pathogenic/parasitic organisms, stimulate nutrition or enhance resistance to disease infections, and reduce abdominal fat and serum levels of harmful lipids, while increasing serum levels of beneficial lipids.
418 Research paper – Achilonu – 2017 – Biochemical proximates of pumpkin Cucurbitaeae spp and their beneficial effects on the general well‐being of poultry species
Where to find the original material: https://onlinelibrary.wiley.com/doi/full/10.1111/jpn.12654; https://doi.org/10.1111/jpn.12654
Country: ZA

408 – Milk acidification to control the growth of Mycoplasma bovis and Salmonella Dublin in contaminated milk (Research paper – Parker – 2016)

 

 

408 Research paper – Parker – 2016 – Milk acidification to control the growth of Mycoplasma bovis and Salmonella Dublin in contaminated milk

408 Research paper
Milk acidification to control the growth of Mycoplasma bovis and Salmonella Dublin in contaminated milk by Parker, A.M., House, J.K., Hazelton, M.S., Bosward, K.L., Mohler, V.L., Maunsell and P.A. Sheehy 2016 Journal of Dairy Science 99: 9875–9884
In Significant Impact Groups: Feed / gut health \ Early feeding (colostrum/feed)
Species targeted: Dairy;
Age: Young;
Summary:
Bacterial contamination of milk fed to calves compromises calf health. Several bacterial pathogens that infect cows, including Mycoplasma bovis and Salmonella enterica ssp. enterica serovar Dublin, are shed in milk, providing a possible route of transmission to calves. Milk acidification lowers the milk pH so that it is unsuitable for bacterial growth and survival. The objectives of this study were to (1) determine the growth of M. bovis and Salmonella Dublin in milk, and (2) evaluate the efficacy of milk acidification using commercially available acidification agent (Salstop, Impextraco, Heist-op-den-Berg, Belgium) to control M. bovis and Salmonella Dublin survival in milk. Results demonstrate that milk acidification using Salstop is effective at eliminating viable M. bovis and Salmonella Dublin organisms in milk if the appropriate pH and exposure time are maintained.
408 Research paper – Parker – 2016 – Milk acidification to control the growth of Mycoplasma bovis and Salmonella Dublin in contaminated milk
Where to find the original material: https://www.journalofdairyscience.org/article/S0022-0302(16)30661-0/fulltext; http://dx.doi.org/10.3168/jds.2016-11537
Country: Australia

407 – Effects of feeding untreated pasteurized and acidified waste milk and bunk tank milk on the performance serum metabolic profiles immunity and intestinal development in Holstein calves (Research paper – Zou – 2017)

 

 

407 Research paper – Zou – 2017 – Effects of feeding untreated pasteurized and acidified waste milk and bunk tank milk on the performance serum metabolic profiles immunity and intestinal

407 Research paper
Effects of feeding untreated, pasteurized and acidified waste milk and bunk tank milk on the performance, serum metabolic profiles, immunity, and intestinal development in Holstein calves by Zou, Y., Wang, Y., Deng, Y. Cao, Z., Li, S., and J. Wang 2017 Journal of Animal Science and Biotechnology 8: 11p
In Significant Impact Groups: Feed / gut health \ Early feeding (colostrum/feed)
Species targeted: Dairy;
Age: Young;
Summary:
The present experiment was performed to assess the effects of different sources of milk on the growth performance, serum metabolism, immunity, and intestinal development of calves. Eighty-four Holstein male neonatal calves were assigned to one of the following four treatment groups: those that received bunk tank milk(BTM), untreated waste milk (UWM), pasteurized waste milk (PWM), and acidified waste milk (AWM) for 21 d.Conclusions: Overall, bunk tank milk is the best choice for calf raising compared to waste milk. The efficiency offeeding pasteurized and acidified waste milk are comparable, and the acidification of waste milk is an acceptablelabor-saving and diarrhea-preventing feed for young calves.
407 Research paper – Zou – 2017 – Effects of feeding untreated pasteurized and acidified waste milk and bunk tank milk on the performance serum metabolic profiles immunity and intestinal development in Holstein calves
Where to find the original material: https://jasbsci.biomedcentral.com/articles/10.1186/s40104-017-0182-4; DOI 10.1186/s40104-017-0182-4
Country: China

 

406 – Effects of butyric acid supplementation (Research paper – Sun – 2019)

 

 

406 Research paper – Sun – 2019 – Effects of butyric acid supplementation

406 Research paper
Effects of butyric acid supplementation of acidified milk on digestive function and weaning stress of cattle calves by Sun, Y.Y., Li, J., Meng, Q.S., Wu, D.L. and M. Xu
2019 Livestock Science Volume 225: 78-84
In Significant Impact Groups: Feed / gut health \ Early feeding (colostrum/feed)
Species targeted: Dairy;
Age: Young;
Summary:
Feed supplements can enhance the health and productivity of livestock. The effects of butyric acid supplementation of acidified milk (AM) on the digestive function of calves and weaning stress were investigated. Thirty-six Holstein calves with a mean age of 5 ± 1 d were selected and divided into three groups (n = 12) and fed: (1) AM (CON); (2) AM + 0.3% butyric acid (BA0.3); or (3) AM + 0.6% butyric acid (BA0.6). Body weight (BW) and body size indicators were recorded during the preweaning stage. At 56 d, 18 calves were euthanized to determine the length and width of their ruminal papillae, duodenum villi, jejunum villi, and ileal villi; emptied rumen, reticulum, omasum, and abomasum weight; and small intestinal mucosa thickness. In conclusion, the addition of butyric acid to AM can reduce the rate of diarrhea, weaning stress and improve metabolic and physical development of the gastrointestinal tract.
406 Research paper – Sun – 2019 – Effects of butyric acid supplementation of acidified milk on digestive function and weaning stress of cattle calves
Where to find the original material: https://www.sciencedirect.com/science/article/abs/pii/S187114131930318X?via%3Dihub; https://doi.org/10.1016/j.livsci.2019.04.021
Country: China